Neutrino Physics at MiniBooNE

Sam Zeller
Columbia University
PHENO 2004

- 1. Motivation and Overview
- 2. Latest Physics Results
- 3. Updated Sensitivity

Motivation: Three Signal Regions

3 exp'l signatures for v oscs point to 3 independent mass splittings

LSND: $\Delta m^2 \sim 0.1-10 \text{ eV}^2$

Atmospheric: $\Delta m^2 \sim 10^{-3} \text{ eV}^2$

Solar: $\Delta m^2 \sim 10^{-5} \text{ eV}^2$

3 v 's allows only 2 indep values of Δm^2 : $\Delta m^2_{21} + \Delta m^2_{32} = \Delta m^2_{31} \Delta m_{12}$

3 distinct oscillation signals with $\Delta m_{sol}^2 + \Delta m_{atm}^2 \neq \Delta m_{LSND}^2$

(or one or more are not seeing v oscillations)

- additional sterile ν involved in the oscillation
 (>3 neutrinos gives 3 independent Δm² scales)
 - or CPT is not a good symmetry
 (yields different mass scales for v, v)

Motivation: the LSND Result

* observed 3.8 σ excess of $\overline{\nu}_e$ in $\overline{\nu}_\mu$ beam evidence for $\overline{\nu}_\mu \to \overline{\nu}_e$ oscillations

$$87.9 \pm 22.4 \pm 6.0$$
 excess
 $P(\overline{v_u} \rightarrow \overline{v_e}) = (0.264 \pm 0.067 \pm 0.045) \%$

* unconfirmed by other experiments

but not excluded

fit to oscillation hypothesis

beam-off and v

excess consistent w/ oscillations

joint
LSND/KARMEN
analysis leaves
large allowed region
compatible with
both experiments

To check LSND want:

- * same L/E, but ...
- * higher statistics
- * different systematics
- * different signal signature & backgrounds

→ MiniBooNE

is that definitive test search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

designed a beamline & detector optimized for this direct search ...

FNAL 8 GeV Booster

MiniBooNE Beamline

 $\langle E_n \rangle \sim 700 \text{ MeV}$ $v_a/v_a \sim 6 \times 10^{-3}$

v_μ Flux v_e Flux

MiniBooNE detector

magnetic horn: meson focusing

movable absorber:
stops muons, undecayed
mesons

technically the most impressive component of MiniBooNE

Neutrino Events

no high level analysis needed to see v events over background

- collect events in 19.2μs window around every beam spill
- see clear excess during 1.6μs expected arrival of ν beam

simple cuts reduce non-beam background to ~1/1000

current collected data:

~260,000 v candidates for 2.3 x 10²⁰ POT

Sam Zeller, PHENO, April 26, 2004

MiniBooNE Particle ID

Cerenkov rings provide primary means of particle identification

produce particles we can detect

Michel e

candidate

Beam no

candidate

 $\pi^0 \to \gamma \gamma$

Sam Zeller, PHENO, April 26, 2004

Latest MiniBooNE Results

coupling this type of PID with reconstruction packages, σ MC, full detector simulation there is a lot of interesting physics on the path to oscillation results ...

MiniBooNE will help improve our understanding of low E v interactions on heavy targets

- imperative to ensure success of future generation v osc exps
- MiniBooNE statistics will exceed any other exp in this E range
- these analyses are interesting in their own right

(1) v_{μ} charged current quasi-elastic (QE)

(2) π^0 events

(3) neutral current elastic scattering

(distributions in all cases relatively normalized)

ν_μ CC Quasi-Elastic Events

 $\nu_{\mu} n \rightarrow \mu^{-} p$

measure visible E and θ_μ from mostly Cerenkov (μ) + some scintillation light (p)

- * 88% purity
- * 30% efficiency

high statistics ~60k QE events now

(~ 30k shown in these plots)

syst error band includes current flux, cross section, detector & optical model uncertainties

ν_μ CC Quasi-Elastic Events

$$Q^2 = m_{\mu}^2 - 2E_{\nu}(E_{\mu} - p_{\mu}\cos\theta_{\mu})$$

 nuclear effects depend strongly on Q², so low Q² region provides information on modeling of nuclear effects in carbon

interesting roll-over in data
 not tracked by Monte Carlo;
 also seen in K2K near detector data

- received a lot of attention at recent NuInt04 workshop
- points to a common model deficiency?

 Q^2 (GeV²)

providing useful feedback to other
 v experiments

MiniBooNE data

$NC \pi^0$ Sample

$\nu_{\mu} N \rightarrow \nu_{\mu} N \pi^{0}$

2 ring fit
determine E, direction
of each Cerenkov ring
→ decay kinematics

~5,000 NC π^0 events now

(~2,500 shown in these plots)

MC fits details of π^0 decays nicely

extracted signal π^{0} 's in data & MC:

understanding rate & kinematics of π^0 production important because background to $\nu_{\mu} \rightarrow \nu_{e}$ search

NC Coherent π⁰ Production

 π^0 angular distribution sensitive to mode of production

- ~ 80% of π^0 's produced resonantly (Δ)
- ~ 20% coherent π^0 production
 - scatter off entire nucleus
 - forward scattered π (low Q²)
- important for $\nu_{\mu} \rightarrow \nu_{e}$ search (coh predicted to be up to 20% of π^{0} background)
- no coherent π data below 2 GeV
- competing models differ by large factors
- important to understand how strongly coherent production contributes to overall NC π^0 rate at low E with MiniBooNE & K2K near detector data

NC Elastic Scattering

- low energy events (< 200 MeV)
- sensitive to optical model
 (useful for studying scintillation properties of oil & low energy response of detector)
- measure Δs (component of p spin carried by s quark)

Monte Carlo models data well down to ~60 tank hits = 150 MeV proton KE

Updated MiniBooNE Sensitivity

detailed re-evaluation of ultimate sensitivity MiniBooNE can achieve

 $\nu_{\mu} \rightarrow \nu_{e}$ oscillation search

contains our current best knowledge updated from MiniBooNE proposal

4-5 σ coverage of LSND 90% CL region with 1x10²¹ POT

to definitively exclude LSND in the event that MiniBooNE does not see a signal, we need 1x10²¹ POT

Conclusions

MiniBooNE has collected 2.3x10²⁰ POT to date:

- ~260,000 v's → roughly 25% of our desired final data sample
- well in the process of calibrating and understanding our detector
- first physics results on QE, NC π^0 , and NC elastic event samples
 - interesting in their own right in addition to supplying information for oscillation analyses
 - large push to compare to other experiments' σ Monte Carlos
 - part of larger effort towards gaining an overall better understanding of low energy neutrino interactions (esp on nuclear targets)
 - MiniBooNE already has > an order of magnitude more events than previous bubble chamber experiments where most of our low E σ knowledge comes from

Outlook on anticipated oscillation results:

- ν_μ disappearance: expect first results later this year
- $v_u \rightarrow v_e$: plan is to "open the box" sometime in 2005